PDL

O

Basics of
Indexing and Threading

Outline

O

Motivation
Indexing

O Dimension manipulation
O Slicing

O Parent and child relation
Threading

O Function's signature

O The core and extra dimensions

References:
1. http://pdl.sourceforge.net/PDLdocs/Indexing.html
2. http://www.johnlapeyre.com/pdl/pdidoc/newbook/node5.html

http://pdl.sourceforge.net/PDLdocs/Indexing.html
http://www.johnlapeyre.com/pdl/pdldoc/newbook/node5.html

Motivation

O

Optimized manipulation of multi-dimensional data
structures.

This 1s achieved by automated looping over dimensions
(called threading).

Indexing
Dimension Manipulation

O

Indexing allows a very flexible access to the data of a piddle.

First we need to know how to track and manipulate dimensions.

perldl> p $a = sequence(5,2); « — Note — first columns then rows
[0 1 2 3 4]
[56 7 8 9]

perldl> p $a->dims; <« dimension sizes

5 2

perldl> p $a->ndims ;- number of dimensions

2

perldl> p $a->dim(0) ;- size of the 0" dimensions

5

perldl> p Sa->nelem;< number of elements

10

Indexing
Dimension Manipulation

O

Now let's do some shuffling...
perldl> p Sa;
[0 12 3 4]
[56 7 8 9]
perldl> p Sa->xchg(0,1); exchangeiimaom
[0 5] and 1% dimensions
[1 6]
[2 7]
[3 8]
[4 9]

On a larger piddle:
perldl> Sm = sequence(3,2,1,5,4);
perldl> p Sm->dims;

32154

perldl> p $m->xchg(0,2)->dims;

12354 < 1 .
perldl> p $Sm->mv(1l,3)->dims ;< move the 1" dimension
31524 to be the 3 dimension

Indexing
Dimension Manipulation

O

Adding dimensions:

perldl> p $x = sequence(3);
[0 1 2]

perldl> p $x->dims;

3

but this can also be represented as a (1,3) matrix:
perldl> p $x->dummy(0);

[0] ¥ add a “dummy” 0" dimension
{;} of size 1 (default size)
perldl> p $x->dummy(0)->dims;
13

and 1in PDL you can also do this:
perldl> p Sy = $x->dummy(0,3);

[0 0 0] ¥ add a “dummy” 0"
[1 1 1] : . :
[2 2 2] dimension of size 3

Indexing
Dimension Manipulation

O

Removing dimensions:

perldl> p Sy;
[0 O O]
[1 1 1]
[2 2 2]

clump together
perldl> p Sy->clump(2);<+— — . . i
[0001 1122 2] first 2 dimensions

perldl> p $x = sequence(3)->dummy(1); [Note: in other examples I erased}

[[0 1 2] the outer rectangular brackets

] . : : :
perldl> p $x->squeeze; < eliminate all dimensions of size 1

[0 1 2] can also be done by $x(;-)

perldl> $x = sequence(2,2,2); . .
perldl> p $x->flat < flatten a piddle to a 1D piddle.

[0123456 7] can also be done by $x(;)

Indexing
Dimension Manipulation

O

Other dimension manipulation functions:

reorder — reorders the dimensions of a piddle.
splitdim — splits a dimension (the opposite of clump).

reshape — change the dimension of a piddle (note: physical
(parent) piddles are changed inplace)

cat, glue, append...

Indexing
Slicing

O

The slice function enables the extraction of rectangular slices of piddles.
PDL.::NiceSlice enables a concise syntax (loaded automatically in perldl).

perldl> p $x = sequence(5,5);
[0O 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]

perldl> p $x(:,0:1);
(0123 4]
[56 78 9]

Extract the even elements along the 1* dimension:
perldl> p $x(,0:-1:2);

[0 1 2 3 4]

[10 11 12 13 14]

[20 21 22 23 24]

Indexing

Slicing
Slice and reverse: Reminder: $x equals to
perldl> p $x(,3:1) [0 1 2 3 4]
[15 16 17 18 19] [5 6 7 8 9]
[10 11 12 13 14] [10 11 12 13 14]
[5 6 7 8 9] [15 16 17 18 19]

[20 21 22 23 24]
To extract the diagonal you can do:
perldl> p $x(0:-1:6;);

[0 6 12 18 24]

or just use the diagonal function...

and you can also extract elements without any periodicity:

perldl> $idx = pdl(4,0,1);
perldl> p $x($idx,$idx);
[24 20 21]
[4 0 1]
[9 5 6]

Indexing

Slicing
. . 0 . Reminder: $x equals to
Slicing using conditions: A
perldl> p $x($x>17;2?); [5 6 7 8 9]
[18 19 20 21 22 23 24] [10 11 12 13 14]
[15 16 17 18 19]
this can also be obtained by: [20 21 22 23 24]

perldl> p $x->where($x>17);

Using multiple conditions:
perldl> p $x($x>17 & $x<20;?);
[18 19]

perldl> p $x($x>17 | $x<5;?);
[01 23 4 18 19 20 21 22 23 24]

Indexing
Parent-Child Relation

O

perldl> p $x = sequence(3,3); « Here defining a new piddle.
[0 1 2] This is called now the “parent”.
[3 4 5]
[6 7 8]

_ Here defining a new piddle to be a slice of the
E’zr %d; p vline = 5x(:,2j-)i < «parent”. This is called a “child”.
(note that without the “-” we had a 2D piddle)

perldl> p Sline++< Making some changes

L8 to the child..

perldl> p $x

[0 1 2] .

[3 4 5] For assignments
[7 8 9]« changes also the parent. UEE =

The dataflow between the child and the parent is bidirectional — enables the
simultaneous representation of the same data in several different ways.

Indexing
Parent-Child Relation

O

A child does not consume extra memory (as with references). Therefore it

1s called a “virtual piddle”.

The dataflow between a parent and child can be broken in two ways:
1. sever — severs any links of a piddle to its parents.

2. copy — creates a physical copy of a piddle.

In most cases they operate similarly, but they act differently on parent

piddles: sever will do nothing and copy will create a new physical copy.

Indexing
Parent-Child Relation

O

An exampe for sever:

perldl> Sa = zeroes(5);

perldl> $b = $a(1l:3);

perldl> $b++;

Shorthand format:
perldl> p Sa;

use
(01 110] $b = $a(l:3;]);
perldl> $b->sever; instead of
perldl> p S$b++; Sb = Sa(l:3)->sever;
[2 2 2]

perldl> p Sa;
[01110]

Threading

O

Threading in PDL means an implicit looping facility.

It allows fast processing of large amounts of data.

It 1s not (directly) related to threading in the computer science
sense.

Threading

O

The function maximum is defined to find the maximal element along a 1D

A simple example:

piddle. Threading allows it to be run on piddles of any dimension, without
any syntactical effort:

perldl> p $Sa = sequence(3);
[0 1 2]
perldl> p S$a->maximum
2
perldl> p $Sa = sequence(3,3);
[0 1 2]
[3 4 5]
[6 7 8]
perldl> p S$a->maximum
[2 5 8]

so how does this work - — —

Threading

O

We need to understand:
1. The elementary operation of a function (signatures).

2. How threading treats extra dimensions.

3. How to manipulate the default threading operation
(dimension manipulation).

Threading

Signatures

O

The definition of a function's input and output dimensions appears in
the function's signature:

perldl> sig maximum This information can also be
ShigEteriaeg MELsiie(a(m) s [@Ie()) found using “? maximum”

a 1s an input piddle, c 1s an output piddle (the names don't matter).
(n) stands for the dimension of the input, which can be any 1D piddle.
[0] stands for output.

() means zero-dimension (a scalar).

This signature tells us that “maximum” expects a 1D piddle as input and
returns a zero-dimensional piddle (a scalar) as output.

Threading

Signatures

O

Let's look at another function — inner:

perldl> sig inner
Signature: inner(a(n); b(n); [o]c())

This signature tells us that inner expects two 1D piddles of the

same dimension size and returns a scalar.

Threading

The Extra Dimensions

O

What happens if we provide a function with piddles that have more

dimensions than defined in the function's signature?

In this case threading takes care of the extra dimensions.

Definitions:

1. Core dimensions — the dimensions which are required by the signature.
By default they are the first dimensions of the piddle.
2. Loop (or extra) dimensions — all the other dimensions over which the

function 1s being looped (“threaded”) over.

Threading

The Extra Dimensions

O

Case 1: an example for the core and loop dimensions — 1 input argument

perldl> sig maximum
Signature: maximum(a(n); [o]c())
perldl> p Sa = sequence(4,3);
[0O 1 2 3]
[4 5 6 7]
[8 9 10 11]
perldl> p S$a->maximum;
[3 7 11]

Here the core dimension is the 0" dimension (columns) of size 4.

maximum 1S threaded over these slices:
perldl> p Sa(:,0);

[01 2 3]

perldl> p Sa(:,1);
[4 5 6 7]

perldl> p Sa(:,2);
[8 9 10 11]

— the 1% dimension is a looi dimension

Threading

The Extra Dimensions

O

When the elementary output 1s a scalar, the number and size of the

output dimensions are as that of the extra dimensions.

In the last example: 1D piddle of size 3.

Reminder:
perldl> sig maximum
Signature: maximum(a(n); [o]c())
perldl> p $Sa = sequence(4,3);
[0O 1 2 3]
[4 5 6 7]
[8 9 10 11]
perldl> p Sa->maximum;
[3 7 11]

Threading

The Extra Dimensions

O

Case 2: an example with more than one input argument

perldl> sig inner
Signature: inner(a(n); b(n); [o]lc())

perldl> p $a = sequence(3,2);
[0 1 2]
[3 4 5]

perldl> p $b = ones(3);
[1 1 1]

perldl> p inner($a,$b);
[3 12]

The 0" dimension of $a and of $b match as required by inner.
But - $a has 1 extra dimension of size 2 while $b doesn't.

Threading

The Extra Dimensions

O

Threading takes care of this missing dimension automatically,

but you can think of this as if a dummy 1 dimension of size 2 was
added to $b:

perldl> p $b->dummy(1,2)
[1 1 1]
[1 1 1]

and now all dimensions match.

Reminder:

perldl> $a = sequence(3,2);
[0 1 2]
[3 4 5]

perldl> p Sb = ones(3);

[1 1 1]

perldl> p inner($a,$b);

[3 12]

Threading

Manipulating Dimensions

O

Case 3: an example for a case where the core dimensions of the
input piddles don't fit the signature's

perldl> sig inner

Signature: inner(a(n); b(n); [o]lc())
perldl> p $Sa = sequence(2,3);

[0 1]

[2 3]

[4 5]
perldl> p Sb = ones(3);
[1 1 1]

perldl> p inner(a,Sb);
Error in inner:Wrong dims

The first dimensions don't match as required by the signature - we
get an error.

Threading

Manipulating Dimensions

O

Reminder:
There are two ways to resolve this: S"E‘O:l]
1. Add a dummy 0" dimension to $b: 23]
perldl> p $b->dummy(0,2); Sh =
[1 1] [1 1 1]
[1 1]

[1 1]
and now the dimension of $b and $a match.

2. Exchange the dimensions of $a to get a piddle of dimension

size (3,2) (which here 1s the same as using transpose):

perldl> p $a->xchg(0,1);
[0 2 4]
[1 3 5]

and we're back to case 2.

Threading

O

Case 3: an example with multiple core and extra dimensions
(taken from PDL::Indexing page —ref 1)

Let's assume we have a function with the following signature:
func((m, n) , (m, n, k), (m), [0](m, k))

This function expects three piddles as input with the above specified
dimensions and returns an output piddle with the corresponding
dimensions.

Now, what happens if we supply this function with piddles of the
following dimensions:

a(s, 3,10, 11) b5, 3,2,10,1,12) c(5, 1,11, 12)

The sizes of the core dimensions are: m=5,n=3,k=2
and they match as required.

Threading

O

What are the loop dimensions (LD)?

signature: func((m, n), (m, n, k), (m), [0](m, k))

a(5,3,10,11) b(5,3,2,10,1,12) (5,1, 11, 12)

* According to the dimensions of a: first LD size 1s 10, second is 11.

* Checking if b LDs match: first LD size 1s 10 — match,
second 1s 1 — this will automatically be extended to 11, and there is a third
LD of size 12.

* Checking the dimensions of c: first LD size 1s 1 — will automatically be
extended to 10, second 1s 11 — match, third i1s 12 - match.

Threading

O

To summarize:
signature: func((m, n), (m, n, k), (m), [0](m, k))
a(s, 3,10, 11) b5, 3,2,10,1,12) c(5,1,11, 12)
The core dimensions are: m=5,n=3,k =2

The loop dimensions are: 10, 11, 12

The output dimensions will be: 5, 2, 10, 11, 12

The End

O

For further reading see the references:

1. http://pdl.sourceforge.net/PDLdocs/Indexing.html
2. http://www.johnlapeyre.com/pdl/pdldoc/newbook/node5.html

http://pdl.sourceforge.net/PDLdocs/Indexing.html
http://www.johnlapeyre.com/pdl/pdldoc/newbook/node5.html

Exercise

O

1. Find the maximal element of each column of a 2D matrix.

2. Extract the odd elements along the columns of a 2D matrix.

And now for a real challenge:

Calculate the tensor product of two matrices.

